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Introduction 

In recent years, the capacity of power 

generation of wind farms and solar PV plants 

has increased and may even exceed the 

capacity of power transmission lines.  This raises 

the question of how to make the most of these 

generators while not overloading the grid. The 

problem may also be the volatility of 

renewable sources – their power generation 

may fluctuate in a very troublesome way. Thus, 

we need to be able to reasonably consume 

excess electricity close to the generators and 

not to try to transfer it further on along 

transmission lines. 

Another bad situation can occur, when the 

consumption is so high that the grid cannot 

satisfy electricity demand. Here, a temporary 

decrease of electricity demand is needed. 

These situations, called grid congestion, can be 

mitigated on demand-side by appropriately 

shaping consumption profiles of relevant 

cluster of consumers. For that, thermal 



capacity of buildings with electric heating and 

cooling offers an attractive source of flexibility 

in power demand. It relates both to smart 

increase of consumption in periods of peak 

generation and to decrease of demand in 

periods of peak consumption.  

Electricity load shaping 

In the following paragraphs, we describe 

shaping of electricity consumption by suitable 

control of electrical heating and cooling in 

buildings.   

Changing temperature setpoints of heating 

and cooling control results in changes of 

electricity consumption. However, manipu-

lating indoor temperatures to accumulate 

heat must not be done arbitrarily - there is a 

strict requirement to maintain adequate indoor 

comfort. Therefore, to find thermal capacity 

that can absorb surplus energy from 

renewable sources, it is necessary to be able to 

predict zone temperatures in the building 

related to various ambient conditions and 

various control actions. Further, calculation of 

costs is important when evaluating various 

control strategies. Here, mathematical models 

can help.  

To decrease considerable total effort of 

deploying qualitatively new controllers, models 

that minimize human labour have been 

developed. 

Complex modelling software  

Simulation models of various complexity are 

used to predict how temperatures inside 

heated or cooled zones are related to 

consumed electricity. EnergyPlus or DOE2 

software systems are building simulators that 

are best known in this field. They are based on 

detailed knowledge of the building – its 

topology, materials of all construction 

elements, technical description of heating, 

ventilation and air conditioning systems. These 

models process influences like weather, 

occupancy and heating or cooling time 

courses and respond with time series describing 

building thermal conditions. 

Advantages and disadvantages of 

complex models 

Accurate models like EnergyPlus are very useful 

for the solution of specific tasks. Civil engineers 

or architects can effectively verify thermal 

properties of their building designs. These 

models are on the other hand much less 

applicable, when one needs to implement 

model predictive control of heating or cooling 

subsystems. One of the reasons is, that these 

intricate models are highly computationally 

demanding – the complexity of resulting 

optimal control problem prevents their 

employment. Furthermore, relevant model can 

be assembled mainly for new buildings, where 

all details of the construction are available, 

while these models of old existing buildings are 

mostly not used, as identification of their 

parameters would be very expensive. 

Models appropriate to reveal flexibility  

For predicting electricity consumption flexibility, 

not too complicated building models, which 

can still satisfactorily characterize building 

thermal behaviour in real conditions, are 

needed. Two types of such models - grey-box 

and black box models – are described below. 

Grey-box models originate in significantly 

simplified first principle state space simulation 

model. Each of their basic components 

represents whole cluster of building elements. 

In one such model, complex building dynamics 

is represented by three thermal inertia: By 

virtual mass of indoor air, mass of external walls 

and by integrated indoor solid masses. This 

model may be further extended or even 

simplified. Influencing inputs are weather, 

occupancy and supplied or removed heat. 

Outputs are states - generalized temperatures 

of all modelled virtual masses. 

Figure 1. RC schema of the gray-box model with 

five temperatures as state variables T. Basic blue 

model is extended by two additional states in 

yellow. 



Black box models on the other hand have no 

relation to physical structure of the modelled 

system. They are often based on machine 

learning and can learn relations between 

indoor temperatures and heating or cooling 

power under various influencing factors.  These 

models can usually well characterize steady 

states conditions of the building, but their 

training needs quite a long monitoring history 

and their response on changes of building 

parameters is slow. 

For determination of flexibility in electricity 

consumption, described thermal models must 

be extended by conversion of electricity to 

heat. Here, we do not consider dynamics, only 

static relation is used, potentially with a 

conversion factor depending on ambient 

conditions. For heat pumps, it may be their 

COP parameter.   

Comparison of the used models 

We tested described approaches in the FHP 

project. Two used black-box models are quite 

simple – classical time series ARIMAX N-lagged 

autoregressive model and self-learning 

regression model using random forest. 

The first is a classical ARIMAX method, often 

used to compute responses of dynamic 

systems. Its disadvantage is that model 

parameters do not correspond to real physical 

properties of the building. 

The simple regression model, as it is 

implemented, lacks dynamics and therefore it 

cannot grasp heat accumulation well. 

Revealed flexibility is thus lower than that 

available. This is the major weakness of this 

approach, when used for flexibility forecasting. 

Grey-box linear state space models are 

systems of linear ordinary differential or 

difference equations. They are often called RC 

models due to their similarity to electric circuits 

with resistors and capacitors. The model 

approximates basic building dynamics by 

thermal capacities of perimeter walls, building 

envelope layer absorbing solar irradiation, 

indoor air masses, inner solid masses like inner 

walls and furniture and heating system thermal 

capacity. Model parameters representing 

conductive heat flows are thermal 

conductivity of perimeter walls, conductivity of 

inner walls and that of heating or cooling 

system. The manipulated variable is heating or 

cooling power. The disturbances are internal 

heat gains, solar irradiation, ambient 

temperature, occupancy and ventilation 

intensity. The model computes time courses of 

state variables, but only time course of virtual 

indoor air temperature is employed in flexibility 

estimation. Using only one virtual temperature 

instead of temperatures of all zones is the 

shortcoming of this approach; single variable 

cannot well represent all temperatures in all 

zones in the building. However, this 

simplification is a necessary compromise 

between model complexity and usability. The 

mitigation of this compromise is described later. 

Another uncertainty of the result is due to the 

input uncertainties. While inputs like future 

profiles of heating and cooling are 

deterministic user-controlled manipulation 

variables, other disturbing inputs cannot be 

reliably forecasted. Thus, any computed time 

profile of temperatures is burdened with an 

error. This must be accounted for, e.g. by 

accepting some solution safety margin.   

Model calibration methods 

The last step of the model creation is iterative 

calibration, which has to determine 

parameters of the model equations as well as 

values of initial system state. After each 

calibration step, simulation results are 

compared to time series of historical 

measurements. Model parameters are then 

updated to minimize the difference between 

model outputs and measured data. This 

process repeats until some stopping criterion, 

like e.g. small progress of several steps, is 

satisfied. However, an absolute match of 

simulations and measurements is not 

expected. 

The calibrations use historical building 

measurements from time periods with diverse 

influences, like e.g. seasonal data. Input data 

are pre-processed and outliers and noise are 

filtered out. Then the calibration iterations start 

with an Initial estimate of the model 

parameters. Initial guess of capacities and 

resistances of substitute electric circuits may be 

based on analogy with physical building 

properties. 



Nonlinear unconstrained or constrained 

optimization method is then used, where the 

minimized objective function is a sum of 

squared differences between simulated and 

measured variables. This approach is known in 

statistics as method of least squares. Constraint 

optimization procedure must be used if the 

iterations tend to converge to odd, unrealistic 

values. For the sake of simplicity derivatives of 

the objective function are approximated by 

numerical differences. 

 

Due to complexity of the modelled system and 

to the limited number of calibration runs, we 

often get ambiguous parameter sets. Two 

calibrations started with different estimates of 

initial parameters usually terminate with quite 

diverse parameter values and strange initial 

states. This non-uniqueness is a common 

phenomenon, which does not need to matter. 

Simulations with these parameters give very 

close results for data inputs used for the 

calibration. However, if the simulation uses 

ambient or operation conditions distant from 

the calibration ones, then, dubious simulation 

results may be obtained and some provision to 

eliminate this ambiguity must be accepted. 

Modelling of a real building 

Grey-box model of the 5th order (Figure 1) was 

calibrated using four seasonal data sets 

acquired from experimental building in 

Sweden. The obtained calibrated parameters 

are different for each of four data sets, any 

satisfactory universal set of parameters could 

not be found. Yet, each seasonal model quite 

well matches measurements. Therefore, 

periodic re-calibrations with coming fresh data 

will be done and model parameters updated 

This may be a natural way, how to maintain 

accuracy of the model. 

Concerning unknown initial values of state 

variables, we expect that their influence 

diminishes with the length of simulation period. 

This means, that for sufficiently long simulation 

an error caused by initial state estimate will be 

negligible.  

Model based flexibility search 

The calibrated building simulation model may 

be used to determine consumption flexibility. 

Before we proceed to the solution, we simplify 

the problem by converting the continuous 

simulation model to a discrete one using a 

suitable discretization method. Now, the 

problem is solved in finite dimensional space. 

Usual discretization step is often related to 

electricity tariffs, which may be e.g. 15 minutes.  

Daily electricity price profile, time course of 

outdoor temperatures, solar irradiation and 

daily profile of expected inner heat gains are 

Figure 2. Summer thermal model of RISE experimental villa: The comparison of 

measurements and solutions of the calibrated model. 



discretized or resampled with the same 

sampling period. 

These data are completed by estimates of 

initial and terminal states, by upper and lower 

bounds of indoor temperatures and heating or 

cooling capacity and together with the 

calibrated discrete thermal model are 

processed by an optimization procedure. It 

minimizes total cost of heating and cooling and 

computes their economically optimal control. 

The result is a sequence of optimal virtual 

temperature profile and respective heating 

and cooling intensity in each sampling interval 

usually 15’ long. 

However, computation of controls for past 

influences is not what is needed, but flexibility 

prediction is. The problem formulation is similar, 

the model is the same, the input variables are 

the same. But the uncertainties of the results 

are higher due to uncertainties of forecasted 

inputs. In practice, these uncertainties are 

reduced adding safety margins to constraints 

and repeating periodically the optimization 

with corrected latest measurements and 

updated forecasts of inputs. 

There is yet one question. In an ideal case, 

solution horizon is extended quite far ahead to 

eliminate negative influence of free terminal 

states on optimal solution. FHP flexibility 

optimization is performed only one or several 

days ahead and the horizon of constant length 

is moved forward accordingly This can 

alleviate inexactness caused by solution on a 

short finite interval.  

Outline of follow-up tasks 

The described approach is a simple smooth 

way, how to estimate flexibility of electricity 

consumption. By automating all the described 

steps, one can get close to desired expert free 

ideal. However, some sort of self-check 

procedure must be added, because the 

described solution changes settings of the 

control loop and has a direct impact on inner 

building conditions.  

An important safeguard provision consists in 

adding an extra feedback with comfort 

specifications, which must be given absolute 

priority in the final control overwrites. If the 

system departs from expected behaviour, this 

feedback controller must intervene to return 

inner conditions to desired limits. 

Another follow-up problem is, how to 

implement control strategy that activates 

flexibility and how will temperatures in zones 

change after the flexibility activation.  For this, 

another model of distributing temperatures 

and heat flows must be designed.

Figure 3. Detected flexibility of building power consumption, which exploits building thermal capacity. 

Flexibility enablers are varied energy price and relaxed thermal comfort 
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